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Criteria for the asymptotic behaviour
of solutions to certain third-order
nonlinear differential equations

Adeyanju A.A., Fabelurin O.O., Akinbo G.,
Aduroja O.O., Ademola A.T., Ogundiran M.O.,

Ogundare B.S., Adesina O.A.

Abstract. We investigate and provide sufficient criteria for ultimate
boundedness of solutions as well as the asymptotic stability of the trivial
solution to certain nonlinear differential equation of order three. Using
the Lyapunov second method and the Yoshizawa limit point approach,
we establish our results. The equation considered is new and more
general. Hence, our results are new, generalized and improved on some
earlier established results. In order to verify the correctness of our
obtained results, a numerical example is provided with the trajectories
of the solutions.

1. Introduction

The discovery of differential equation(DE) between 16th and 17th cen-
turies as a branch of mathematics has paved way for modeling of real life
problems of interest in science, technology, finance and many other areas
of human life, see [10, 12, 15, 19, 24] and the references contained in them.
Thus, there has been a continuous need to examine the qualitative proper-
ties of solutions of various DEs in literature. In most of the papers found
on the qualitative study of solution of DEs in literature, the direct method
of Lyapunov has been considered a veritable and celebrated method being
used by several notable researchers. This method, needs no knowledge of
the solutions of the equation being investigated before studying the qualita-
tive behavour of the solutions of any DE. The method requires constructing
a function that is positive definite everywhere in the domain of definition,
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except at the equilibrium where it becomes zero, while the derivative of the
function along the solution curves to the DE under study is expected to be
negative semi-definite. However, to construct such a function is and remains
a tedious task for researchers, especially if the equation is non-linear.

Despite the above mentioned challenge of the method, it has been exten-
sively employed to establish many interesting results in the area of qual-
itative behaviour of solutions of many classess of DEs. See for instance
references [1–3,6–9,11,13–18,20,21,23,24,26] are few among several authors
who have employed the method.

Hence, this paper is about

(1)
...
φ + (u(t, φ, φ̇, φ̈) + v(t, φ, φ̇, φ̈))φ̈

+ w(t, φ, φ̇, φ̈)φ̇+ r(t)c(t, φ, φ̇, φ̈)h(φ) = p(t, φ, φ̇, φ̈),

where h ∈ C(R,R), r(t) ∈ C(R+,R) u, v, w, c, p ∈ C
(
[0,∞) × R × R ×

R, R
)
, R = (−∞,∞) and R+ = [0,+∞). Equation (1) is reduced to system

of first order DEs:

(2)

φ̇ = χ,

χ̇ = ψ,

ψ̇ = −(u(t, φ, χ, ψ) + v(t, φ, χ, ψ))ψ − w(t, φ, χ, ψ)χ

− r(t)c(t, φ, χ, ψ)h(φ) + p(t, φ, χ, ψ).

It shall be taken that the partial derivatives

wt(t, φ, χ, ψ), wφ(t, φ, χ, ψ), wψ(t, φ, χ, ψ), ṙ(t) =
dr(t)

dt

exist and are continuous for every t ≥ 0, φ, χ, ψ.
Sufficient conditions that ensured stability, boundedness and asymptotic

behavior of solutions of equations similar to the equation (1) or the system
(2) were discussed in [1–3, 9, 17, 22]. However, the present work is a gen-
eralization and improvement on the works of Adams and Omeike [1], Ateş
[9] and Omeike[17]. Particularly in [1], the case for which w(t, φ, χ, ψ)χ =
b(t)ϕ(x, y) and r(t) = 1 in the system (2) was investigated for equiasymp-
totical stability of the zero solution.

Starting with the results published in ([1–3,22]), the aim of this paper is to
obtain the afore-mentioned qualitative properties for equation (1) with much
less restricted conditions and also generalize some earlier proved results in
literature.

2. Main results

Henceforth, where necessary and for the sake of simplicity, we shall write

u(t, φ, χ, ψ), v(t, φ, χ, ψ), c(t, φ, χ, ψ)

as u(.), v(.) and c(.) respectively.
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Theorem 1. Assuming for some positive constants γ0, γ1, γ2, αc, αh, r0, r1
the following conditions hold in addition to other basic conditions already
assumed on non-linear terms appearing in (1):

(i) γ0 ≤ w(t, φ, χ, ψ) ≤ γ1, τwφ(t, φ, τ, 0) ≤ 0,
wt(t, φ, τ, 0) ≤ 0, wψ(t, φ, χ, ψ)χ ≥ 0,
for all t ≥ 0, φ, χ, ψ;

(ii) 0 < h(φ)φ−1 ≤ αh, (φ ̸= 0), 0 < c(.) ≤ αc;
(iii) r0 ≤ r(t) ≤ r1, ṙ(t) ≤ 0;
(iv) r(t) ≤ min

{2(v(.)+u(.))
c(.) , γ0|ϕ(t)|

}
and

1 + c(.)(h(φ)φ−1)2 ≤ |ϕ(t)|;
(v) Φ(t) ≤ γ2;
(vi) |p(t, φ, χ, ψ)| ≤ |ϕ(t)|

hold. Then system (2) has all solutions to be uniformly ultimately bounded.

Theorem 2. Under the conditions of Theorem 1, every solution (φ(t), χ(t),
ψ(t)) of (2) is bounded uniformly and also satisfies

lim
t→∞

(
φ(t), χ(t), ψ(t)

)
= (0, 0, 0).

Theorem 3. If all the conditions of Theorem (1) hold, then any solution
(φ(t), χ(t), ψ(t)) of (2) passing through the initial condition(

φ(0), χ(0), ψ(0)
)
= (φ0, χ0, ψ0),

must satisfy

(3) |φ(t)| ≤ B, |χ(t)| ≤ B, |ψ(t)| ≤ B,

for every t ≥ 0, φ, χ and ψ, where B > 0 is a constant.

Theorem 4. If p(t, φ, χ, t) = 0 and conditions (i)-(v) listed in Theorem 1
hold. Then, (2) has uniformly asymptotically stable trivial solution.

We prove Theorems 1 – 4 using the function V (t, φ, χ, ψ) = V (t) given by

(4) V (t) = e−Φ(t)U1(t, φ, χ, ψ),

where,

Φ(t) =

∫ t

0
|ϕ(s)|ds,

and U1(t, φ, χ, ψ) = U1(t) is defined as

(5) 2U1(t) = r(t)φ2 + 2

∫ χ

0
τw(t, φ, τ, 0)dτ + ψ2 + 4.

First, we shall establish that the function contained in (4) is a Lyapunov
function through the following lemma.
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Lemma 1. By Theorem (1), we can find certain positive constants B0, B1

and B2 such that the scalar function V (t) in (4) and it’s derivative V̇ (t)
satisfy

B0{X} ≤ V (t) ≤ B1{X},
V (t) → +∞ as X → +∞

and the derivative of V (t) along (2) satisfies

V̇(1.2)(t) ≤ −B2{X},

where X = φ2(t) + χ2(t) + ψ2(t).

Proof. We shall establish here that U1(t) in (5) is both bounded below and
above by some positive functions.

(6)

2U1(t) = r(t)φ2 + 2

∫ χ

0
τw(t, φ, τ, 0)dτ + ψ2 + 4

≥ r(t)φ2 + 2γ0

∫ χ

0
τdτ + ψ2

≥ r0φ
2 + γ0χ

2 + ψ2

≥ B0{X},
such that B0 = min{r0, γ0, 1}.

Similarly, by making use of the conditions of Lemma 1 or Theorem 1, we
have

(7) 2U1(t) ≤ B1{X}+ 4,

where B1 = max{r1, γ1, 1}. Thus, by condition (v) of Theorem 1, inequalities
(6) and (7), we have

(8) B0e
−γ2{X} ≤ V (t) ≤ B1{X}+ 4.

The first half of inequality (8) shows that V (t) is positive definite for all
φ, χ, ψ and

(9) V (t) → +∞ as X → ∞.

Next, we obtain V̇ (t) along the system (2) with respect to variable t.

V̇ |(2)(t) = −Φ̇(t)e−Φ(t)U1(t) + e−Φ(t)U̇1(t)

= −e−Φ(t)

{
Φ̇(t)

(
r(t)φ2 + 2

∫ χ

0
τw(t, φ, τ, 0)dτ + ψ2 + 4

)
− ṙ(t)φ2

− 2r(t)φχ+ 2(u(.) + v(.))ψ2 + 2r(t)c(.)h(φ)ψ − 2ψp(t, φ, χ, ψ)

+ [w(t, φ, χ, ψ)− w(t, φ, χ, 0)]χψ

− 2χ

∫ χ

0
τwφ(t, φ, τ, 0)dτ − 2

∫ χ

0
τwt(t, φ, τ, 0)dτ

}
= −e−Φ(t)

{
|ϕ(t)|

(
r(t)φ2 + 2

∫ χ

0
τw(t, φ, τ, 0)dτ + ψ2 + 4

)
− ṙ(t)φ2
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− 2r(t)φχ+ 2(u(.) + v(.))ψ2 + 2r(t)c(.)h(φ)ψ − 2ψp(t, φ, χ, ψ)

+ [w(t, φ, χ, ψ)− w(t, φ, χ, 0)]χψ − 2χ

∫ χ

0
τwφ(t, φ, τ, 0)dτ

− 2

∫ χ

0
τwt(t, φ, τ, 0)dτ

}
.

By applying the conditions stated in Lemma (1) and noting that

0 ≤ (ψ − 2)2,

2ψ ≤ 1

2
(ψ2 + 4) ≤ ψ2 + 4,

for all t ≥ 0, ψ.
Hence,

(10) 2ψ|p(t, φ, χ, ψ)| ≤ (ψ2 + 4)|ϕ(t)|.
Also, by using the inequality |ab| ≤ 1

2(a
2 + b2), we have

(11)
|ϕ(t)|r(t)φ2 + 2r(t)|φχ| ≤ |ϕ(t)|r(t)φ2 + r(t){φ2 + χ2},

2r(t)c(.)|h(φ)ψ| ≤ r(t)c(.){h2(φ) + ψ2}.
Similarly, by mean value theorem and the condition (i) of Theorem (1), we
get

(12)
w(t, φ, χ, ψ)χψ − w(t, φ, χ, 0)χψ =

w(t, φ, χ, ψ)− w(t, φ, χ, 0)

ψ
χψ2

= wψ(t, φ, χ, θψ)χψ
2

≥ 0,

where 0 ≤ θ ≤ 1.
Therefore, from (10) – (12), we have

V̇ |(2)(t) ≤ −e−Φ(t)

{[
r(t)

(
|ϕ(t)| −

(
1 + c(.)(h(φ)φ−1)2

))
− ṙ(t)

]
φ2

+
[
|ϕ(t)|γ0 − r(t)

]
χ2 +

[
2(u(.) + v(.))− r(t)c(.)

]
ψ2

}
.

Hence, from conditions listed in (iv) of Theorem (1), we can get a positive
constant say, B3, so small that

(13) V̇(2)(t) ≤ −B3(X),

∀ t ≥ 0, x, y and z,
where

X = x2 + y2 + z2. □

Proof of Theorem 1. Suppose that (φ(t), χ(t), ψ(t)) is any solution to (2).
Then, by estimates (8), (9) and (13), all the conditions Theorem 10.4, pp.
42 of Yoshizawa [28] hold. Hence, our result is established. □
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Proof of Theorem 2. Suppose (φ(t), χ(t), ψ(t)) is a given solution to the sys-
tem (2). Then, by inequality (13) of Lemma 1, it is obvious that V̇(2)(t) ≤ 0
for all t ≥ 0, φ, χ, ψ. Thus, V (t) satisfied all the conditions of Theorem 10.2,
pp. 38-39 of Yoshizawa [28]. Therefore, (2) has uniformly bounded solu-
tions. The concluding part of the proof is established similarly as in the
proof of Theorem (2) of [2]. Therefore, the details are omitted. □

Proof of Theorem 3. Inequality (8) of Lemma 1 is still valid here while we
have the derivative to be

V̇ |(2)(t) = −e−Φ(t)

{
|ϕ(t)|

(
r(t)φ2 + 2

∫ χ

0
τw(t, φ, τ, 0)dτ + ψ2 + 4

)
− ṙ(t)φ2

− 2r(t)φχ+ 2(u(.) + v(.))ψ2 + 2r(t)c(.)h(φ)ψ − 2ψp(t, φ, χ, ψ)

+ [w(t, φ, χ, ψ)− w(t, φ, χ, 0)]χψ

− 2χ

∫ χ

0
τwφ(t, φ, τ, 0)dτ − 2

∫ χ

0
τwt(t, φ, τ, 0)dτ

}
.

After using (11) and (12), we obtain

V̇ |(2)(t) ≤ −e−Φ(t)

{[
r(t)

(
|ϕ(t)| − (1 + c(.)(h(φ)φ−1)2)

)
− ṙ(t)

]
φ2

+
[
|ϕ(t)|γ0 − r(t)

]
χ2 +

[
2(u(.) + v(.))− r(t)c(.) + |ϕ(t)|

]
ψ2

+ 4|ϕ(t)| − 2ψp(t, φ, χ, ψ)

}
≤ e−Φ(t)2ψp(t, φ, χ, ψ).

We make use of the fact that 2|ψ| ≤ 1+ψ2 and the condition (vi) of Theorem
(1), to obtain

V̇ |(2)(t) ≤ e−Φ(t)
(
1 + ψ2(t)

)
|p(t, φ, χ, ψ)|

≤ e−Φ(t)|ϕ(t)|+ e−Φ(t)
(
φ2(t) + χ2(t) + ψ2(t)

)
|ϕ(t)|.

By applying condition (v) of Theorem 1 and inequality (8) in the above
estimate, we obtain

V̇ |(2)(t)−B−1
0 |ϕ(t)|V (t) ≤ |ϕ(t)|.

Solving this equation, we obtain

(14) V (t) ≤ B4,

where B4 = [V (t0) + γ2] exp(B
−1
0 γ2) > 0 is a constant. Thus, from the left

hand side of (8) and (14), we have

(15) {φ2(t) + χ2(t) + ψ2(t)} ≤ B4B
−1
0 exp{γ2} = B5.

Inequality (3) of Theorem 3 now follows from (15) with B =
√
B5. □
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Proof of Theorem 4. Following the limit point approach of [27], we demon-
strate that if Lemma 1 holds, then the function U1(t) → 0 as t→ ∞. First,
we set p = 0 in (4) to obtain V (t) = U1(t). It follows immediately from
(6) and (7) that U1(t) is positive definite and U1(t) → ∞ if and only if
φ2(t)+χ2(t)+ψ2(t) → ∞. The remaining part of the proof can be obtained
just like in the proof of Theorem 2.1 of [4] or proof of Theorem 2.4 of [5]. □

3. Example

An example which is a special case of either equation (1) or its equivalent
system (2) will be provided to validate our results.

Consider the equation (1) and its equivalent system (2), if we let

w(t, φ, χ, ψ) = 7 +
2

2 + t4 + |φχ| sin2 χ+ e−|χψ| ,

v(t, φ, χ, ψ) = 3− 2

1 + t2 + e−|φχψ| ,

u(t, φ, χ, ψ) = 3 +
1

1 + et+φ2+χ2+ψ2 ,

c(t, φ, χ, ψ) = 1 +
1

2 + tφ2 + χ2 + ψ2
,

h(φ) =
1

4
φ, r(t) = 4 +

1

4 + t4
,

p(t, φ, χ, ψ) =
4

2 + sin t+ (φ+ χ+ ψ)2
.

We proceed to show that functions u, v, w, c, h and p satisfy all the assump-
tions placed on them under the basic assumptions.

Starting with function w, we observe that

7 ≤ w(t, φ, χ, ψ) = 7 +
2

2 + t4 + |φχ| sin2 χ+ e−|χψ| ≤ 8,

which gives γ0 = 7 and γ1 = 8.
The partial derives of w with respect to each of its dependent variables

are:

wt(t, φ, χ, ψ) = − 4t3

(2 + t4 + |φχ| sin2 χ+ e−|χψ|)2
≤ 0,

wφ(t, φ, χ, ψ) = − |χ| sin2 χ
(2 + t4 + |φχ| sin2 χ+ e−|χψ|)2

,

wψ(t, φ, χ, ψ) =
e−|χψ||χ|

(2 + t4 + |φχ| sin2 χ+ e−|χψ|)2
.
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Thus,

τwφ(t, φ, τ, 0) = − τ2 sin2 τ

(2 + t4 + |φτ | sin2 τ + 1)2
≤ 0,

χwψ(t, φ, χ, ψ) =
e−|χψ|χ2

(2 + t4 + |φχ| sin2 χ+ e−|χψ|)2
≥ 0.

Similarly, we have

c(t, φ, χ, ψ) = 1 +
1

2 + tφ2 + χ2 + ψ2
≤ 1.5 = αc,

3 ≤ u(t, φ, χ, ψ) = 3 +
1

1 + et+φ2+χ2+ψ2 ,

1 ≤ v(t, φ, χ, ψ) = 3− 2

1 + t2 + e−|φχψ| .

More so, p satisfies

|p(t, φ, χ, ψ)| ≤ 4

2 + sin t
= ϕ(t),

which implies that
4

3
≤ |ϕ(t)| ≤ 4.

Thus,

Φ(t) = 4

∫ t

0

ds

2 + sin s
=

8
√
3

3
arctan

(√3

3

(
2 tan(0.5t) + 1

))
− 4π

√
3

9

≤ 7.5 = γ2.

h(φ)φ−1 ≤ 1

4
= αh.

Finally,

4 ≤ r(t) = 4 +
1

4 + t4
≤ 17

4
,

such that, its derivative satisfies

ṙ(t) = − 4t3

(4 + t4)2
≤ 0.

Clearly,

1 + c(.)(h(φ)φ−1)2 ≤ 35

32
and

4

3
≤ |ϕ(t)|.

Hence,
1 + c(.)(h(φ)φ−1)2 ≤ |ϕ(t)|.

r(t) ≤ 17

4
≤ min

{2(v(.) + u(.))

c(.)
, γ0|ϕ(t)|

}
= min

{16

3
,
28

3

}
=

16

3
.

Therefore, all the conditions of the theorems are met by this example.
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Figure 1. Showing uniform asymptotic stability behaviour
of the zero solution when p(t, φ, χ, ψ) ≡ 0 in the example
constructed for t ∈ [0, 30].

Figure 2. Showing uniform ultimate boundedness be-
haviour of all solutions when p(t, φ, χ, ψ) ̸= 0 in the example
constructed for t ∈ [0, 30].
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4. Conclusion

By impossing conditions on the nonlinear terms appearing in the equation
considered in this work, we have established sufficient criteria for the solu-
tions of the problem to be stable and bounded using employing Lyapunov
function as a tool.
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